Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathione-mediated transfer of Cu(I) into phytochelatins.

Identifieur interne : 000486 ( Main/Exploration ); précédent : 000485; suivant : 000487

Glutathione-mediated transfer of Cu(I) into phytochelatins.

Auteurs : R K Mehra [États-Unis] ; P. Mulchandani

Source :

RBID : pubmed:7741699

Descripteurs français

English descriptors

Abstract

Room temperature luminescence attributable to Cu(I)-thiolate clusters has been used to probe the transfer of Cu(I) from Cu(I)-glutathione complex to rabbit liver thionein-II and plant metal-binding peptides phytochelatins (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly and (gamma-Glu-Cys)4Gly. Reconstitutions were also performed using CuC1. The Cu(I)-binding stoichiometry of metallothionein or phytochelatins was generally independent of the Cu(I) donor. However, the luminescence of the reconstituted metallothionein or phytochelatins was higher when Cu(I)-GSH was the donor. This higher luminescence is presumably due to the stabilizing effect of GSH on Cu(I)-thiolate clusters. As expected, 12 Cu(I) ions were bound per molecule of metallothionein. The Cu(I) binding to phytochelatins depended on their chain length; the binding stoichiometries being 1.25, 2.0 and 2.5 for (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly and (gamma-Glu-Cys)4Gly respectively at neutral pH. A reduced stoichiometry for the longer phytochelatins was observed at alkaline pH. No GSH was found to associate with phytochelatins by a gel-filtration assay. The Cu(I) binding to (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly occurred in a biphasic manner in the sense that the relative luminescence increased approximately linearly with the amount of Cu(I) up to a certain molar ratio whereafter luminescence increased dramatically upon the binding of additional Cu(I). The luminescence intensity declined once the metal-binding sites were saturated. In analogy with the studies on metallothioneins, biphasic luminescence suggests the formation of two types of Cu(I) clusters in phytochelatins.

DOI: 10.1042/bj3070697
PubMed: 7741699
PubMed Central: PMC1136707


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathione-mediated transfer of Cu(I) into phytochelatins.</title>
<author>
<name sortKey="Mehra, R K" sort="Mehra, R K" uniqKey="Mehra R" first="R K" last="Mehra">R K Mehra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of California, Riverside 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of California, Riverside 92521</wicri:regionArea>
<wicri:noRegion>Riverside 92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mulchandani, P" sort="Mulchandani, P" uniqKey="Mulchandani P" first="P" last="Mulchandani">P. Mulchandani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:7741699</idno>
<idno type="pmid">7741699</idno>
<idno type="pmc">PMC1136707</idno>
<idno type="doi">10.1042/bj3070697</idno>
<idno type="wicri:Area/Main/Corpus">000486</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000486</idno>
<idno type="wicri:Area/Main/Curation">000486</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000486</idno>
<idno type="wicri:Area/Main/Exploration">000486</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathione-mediated transfer of Cu(I) into phytochelatins.</title>
<author>
<name sortKey="Mehra, R K" sort="Mehra, R K" uniqKey="Mehra R" first="R K" last="Mehra">R K Mehra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of California, Riverside 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of California, Riverside 92521</wicri:regionArea>
<wicri:noRegion>Riverside 92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mulchandani, P" sort="Mulchandani, P" uniqKey="Mulchandani P" first="P" last="Mulchandani">P. Mulchandani</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="ISSN">0264-6021</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Biological Transport (MeSH)</term>
<term>Chromatography, Gel (MeSH)</term>
<term>Copper (metabolism)</term>
<term>Drug Stability (MeSH)</term>
<term>Glutathione (pharmacology)</term>
<term>Liver (metabolism)</term>
<term>Luminescent Measurements (MeSH)</term>
<term>Metalloproteins (metabolism)</term>
<term>Metallothionein (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phytochelatins (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Rabbits (MeSH)</term>
<term>Spectrophotometry, Ultraviolet (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Chromatographie sur gel (MeSH)</term>
<term>Cuivre (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Foie (métabolisme)</term>
<term>Glutathion (pharmacologie)</term>
<term>Lapins (MeSH)</term>
<term>Mesures de luminescence (MeSH)</term>
<term>Métalloprotéines (métabolisme)</term>
<term>Métallothionéine (métabolisme)</term>
<term>Phytochélatines (MeSH)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Spectrophotométrie UV (MeSH)</term>
<term>Stabilité de médicament (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Copper</term>
<term>Metalloproteins</term>
<term>Metallothionein</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cuivre</term>
<term>Foie</term>
<term>Métalloprotéines</term>
<term>Métallothionéine</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Biological Transport</term>
<term>Chromatography, Gel</term>
<term>Drug Stability</term>
<term>Luminescent Measurements</term>
<term>Molecular Sequence Data</term>
<term>Phytochelatins</term>
<term>Rabbits</term>
<term>Spectrophotometry, Ultraviolet</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Chromatographie sur gel</term>
<term>Données de séquences moléculaires</term>
<term>Lapins</term>
<term>Mesures de luminescence</term>
<term>Phytochélatines</term>
<term>Spectrophotométrie UV</term>
<term>Stabilité de médicament</term>
<term>Séquence d'acides aminés</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Room temperature luminescence attributable to Cu(I)-thiolate clusters has been used to probe the transfer of Cu(I) from Cu(I)-glutathione complex to rabbit liver thionein-II and plant metal-binding peptides phytochelatins (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly and (gamma-Glu-Cys)4Gly. Reconstitutions were also performed using CuC1. The Cu(I)-binding stoichiometry of metallothionein or phytochelatins was generally independent of the Cu(I) donor. However, the luminescence of the reconstituted metallothionein or phytochelatins was higher when Cu(I)-GSH was the donor. This higher luminescence is presumably due to the stabilizing effect of GSH on Cu(I)-thiolate clusters. As expected, 12 Cu(I) ions were bound per molecule of metallothionein. The Cu(I) binding to phytochelatins depended on their chain length; the binding stoichiometries being 1.25, 2.0 and 2.5 for (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly and (gamma-Glu-Cys)4Gly respectively at neutral pH. A reduced stoichiometry for the longer phytochelatins was observed at alkaline pH. No GSH was found to associate with phytochelatins by a gel-filtration assay. The Cu(I) binding to (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly occurred in a biphasic manner in the sense that the relative luminescence increased approximately linearly with the amount of Cu(I) up to a certain molar ratio whereafter luminescence increased dramatically upon the binding of additional Cu(I). The luminescence intensity declined once the metal-binding sites were saturated. In analogy with the studies on metallothioneins, biphasic luminescence suggests the formation of two types of Cu(I) clusters in phytochelatins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7741699</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>06</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0264-6021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>307 ( Pt 3)</Volume>
<PubDate>
<Year>1995</Year>
<Month>May</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathione-mediated transfer of Cu(I) into phytochelatins.</ArticleTitle>
<Pagination>
<MedlinePgn>697-705</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Room temperature luminescence attributable to Cu(I)-thiolate clusters has been used to probe the transfer of Cu(I) from Cu(I)-glutathione complex to rabbit liver thionein-II and plant metal-binding peptides phytochelatins (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly and (gamma-Glu-Cys)4Gly. Reconstitutions were also performed using CuC1. The Cu(I)-binding stoichiometry of metallothionein or phytochelatins was generally independent of the Cu(I) donor. However, the luminescence of the reconstituted metallothionein or phytochelatins was higher when Cu(I)-GSH was the donor. This higher luminescence is presumably due to the stabilizing effect of GSH on Cu(I)-thiolate clusters. As expected, 12 Cu(I) ions were bound per molecule of metallothionein. The Cu(I) binding to phytochelatins depended on their chain length; the binding stoichiometries being 1.25, 2.0 and 2.5 for (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly and (gamma-Glu-Cys)4Gly respectively at neutral pH. A reduced stoichiometry for the longer phytochelatins was observed at alkaline pH. No GSH was found to associate with phytochelatins by a gel-filtration assay. The Cu(I) binding to (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly occurred in a biphasic manner in the sense that the relative luminescence increased approximately linearly with the amount of Cu(I) up to a certain molar ratio whereafter luminescence increased dramatically upon the binding of additional Cu(I). The luminescence intensity declined once the metal-binding sites were saturated. In analogy with the studies on metallothioneins, biphasic luminescence suggests the formation of two types of Cu(I) clusters in phytochelatins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mehra</LastName>
<ForeName>R K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of California, Riverside 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mulchandani</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008667">Metalloproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9038-94-2</RegistryNumber>
<NameOfSubstance UI="D008668">Metallothionein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98726-08-0</RegistryNumber>
<NameOfSubstance UI="D054811">Phytochelatins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>C955P95064</RegistryNumber>
<NameOfSubstance UI="C028419">cuprous chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002850" MajorTopicYN="N">Chromatography, Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004355" MajorTopicYN="N">Drug Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008099" MajorTopicYN="N">Liver</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008163" MajorTopicYN="N">Luminescent Measurements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008667" MajorTopicYN="N">Metalloproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008668" MajorTopicYN="N">Metallothionein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054811" MajorTopicYN="N">Phytochelatins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>5</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7741699</ArticleId>
<ArticleId IdType="pmc">PMC1136707</ArticleId>
<ArticleId IdType="doi">10.1042/bj3070697</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Dec;85(23):8815-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3194392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1987 Sep;1(3):220-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2887478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1992;157(4):305-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1534214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;205:348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1779795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Jun 15;292 ( Pt 3):673-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8317998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1993 Jul;139(7):1605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8371121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 1991 Jan;45(1):30-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Oct 1;295 ( Pt 1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8216201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 Oct;290(1):207-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1898091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1988 Feb 29;151(1):32-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2894829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Apr 10;257(7):3471-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6801048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1994 May 16;200(3):1193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8185567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1990;59:61-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2197985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Jun 10;256(11):5712-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7240167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 1992 Nov 1;48(2):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1431888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Nov 25;264(33):19747-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2584191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1988 Sep;265(2):381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3421713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;205:333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1779793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1967 Mar;119(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6052434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Mar 25;263(9):4186-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3346245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1985;113:548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4088074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;205:458-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1779809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 1991 Feb-Mar;69(2-3):115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2031714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Experientia Suppl. 1979;34:211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">45414</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Mulchandani, P" sort="Mulchandani, P" uniqKey="Mulchandani P" first="P" last="Mulchandani">P. Mulchandani</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Mehra, R K" sort="Mehra, R K" uniqKey="Mehra R" first="R K" last="Mehra">R K Mehra</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000486 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000486 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7741699
   |texte=   Glutathione-mediated transfer of Cu(I) into phytochelatins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7741699" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020